Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

M. Yogavel, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$
K. Sekar, ${ }^{\text {b }}$ H. Schenk, ${ }^{\text {c }}$
J. Fraanje, ${ }^{\text {c }}$ R. Peschar, ${ }^{\text {c }}$
S. Srinivasan, ${ }^{d}$ PR. Athappan ${ }^{d}$ and Z. A. Rafi ${ }^{\mathrm{e}^{*}}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Bioinformatics Centre and Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India, ${ }^{\text {'Laboratory of Crystallography, Institute of }}$ Molecular Chemistry, University of Amsterdam, Achtergracht 116, 1018 WV, Amsterdam, The Netherlands., ${ }^{\text {d }}$ School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ${ }^{\text {e }}$ Bioinformatics Centre, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: rafi@mrna.tn.nic.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.067$
$w R$ factor $=0.198$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Acetyl-2-hydroxy-2-methylchromene

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$, the pyran ring adopts a halfchair conformation. In the crystal, the inversion-related molecules exist as $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers and these dimeric pairs are reinforced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Chromene derivatives exhibit antifeedant activity against larvae of Spilarctia obliqua (Agarwal et al., 2000) and some 2 H -chromene derivatives are found to possess antimicrobial activities (El-Gaby et al., 2000). Endothelin-A (ET ${ }_{A}$) selective receptor antagonists contain the 2 H -chromene moiety (Ishizuka et al., 2002). In addition to these activities, chromene derivatives possess photochromic properties. The structure determination of the title compound, (I), was undertaken as part of our studies on chromene derivatives.

(I)

In (I) (Fig. 1), the pyran ring adopts a half-chair conformation, with asymmetry parameter $\Delta_{2}(\mathrm{C} 2-\mathrm{O} 1)=$ 0.009 (1) (Nardelli, 1983). Atoms O1 and C2 deviate from the weighted least-squares plane through the remaining four atoms of the pyran ring by -0.253 (1) and 0.214 (2) \AA, respectively. The hydroxy and methyl groups at C 2 adopt pseudo-axial and pseudo-equatorial orientations, respectively. The acetyl group is planar and makes a dihedral angle of 28.6 (1) ${ }^{\circ}$ with the mean plane passing through atoms C3-C10. The bond angles at $s p^{3}$-hybridized atom C2 show substantial distortion from the ideal tetrahedral value of 109.5°. Similar observations have been noted in the crystal structures of related chromene derivatives (Aldoshin et al., 1995, 1996; Yogavel et al., 2003). The C3-C4 [1.343 (2) \AA] bond length is comparable with the previously reported value of 1.350 (4) \AA for 3-benzoyl-2-hydroxy-2-methylchromene (Yogavel et al., 2003).

The distinctive feature of the crystal structure of (I) is that the inversion-related intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) lead to the formation of dimeric pairs with graph-set $R_{2}^{2}(12)$ (Etter et al., 1990), and these dimeric pairs are further reinforced by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Experimental

Acetylacetone (10 mmol) in ethanol was mixed with salicylaldehyde (10 mmol), to which was added 0.5 ml of piperidine. The solution

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and 35% probability displacement ellipsoids.

Figure 2
A view of the hydrogen-bonded dimers.
mixture was stirred thoroughly for about 3 h with occasional cooling. This mixture was then kept in a refrigerator for 12 h . A yellow product was obtained and this was separated out, filtered, washed with a small amount of ethanol and dried under vacuum. The title compound was recrystallized from a chloroform/petroleum ether (1:1 volume ratio) solution.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=204.22$
Triclinic, $P \overline{1}$
$a=7.574$ (2) A
$b=8.672(2) \AA$
$c=8.789(3) \AA$
$\alpha=106.32(3)^{\circ}$
$\beta=110.99(3)^{\circ}$
$\gamma=93.28(3)^{\circ}$
$V=509.2(2) \AA^{3}$

Data collection

[^0]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1509 P)^{2}\right. \\ & +0.0906 P]\end{aligned}$
$w R\left(F^{2}\right)=0.198$
$S=1.05$
2091 reflections
140 parameters
H -atom parameters constrained
$+0.0906 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.104 (12)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 9$	$1.364(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.343(2)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.4454(18)$	$\mathrm{C} 13-\mathrm{O} 14$	$1.218(2)$
$\mathrm{C} 2-\mathrm{O} 11$	$1.3998(19)$		
			$105.64(12)$
$\mathrm{O} 11-\mathrm{C} 2-\mathrm{O} 1$	$109.02(13)$	$\mathrm{O} 11-\mathrm{C} 2-\mathrm{C} 3$	$110.84(11)$
$\mathrm{O} 11-\mathrm{C} 2-\mathrm{C} 12$	$114.01(13)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.79(13)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 12$	$102.54(13)$	$\mathrm{C} 12-\mathrm{C} 2-\mathrm{C} 3$	
			$10.4(2)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$39.03(18)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$	$-155.77(17)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-24.25(19)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 13-\mathrm{O} 14$	$14.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$0.9(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 13-\mathrm{O} 14$	$22.5(2)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$-30.7(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 13-\mathrm{C} 15$	$-167.43(14)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 4$	$4.4(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 13-\mathrm{C} 15$	

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O11-H11 \cdots O14 ${ }^{\mathrm{i}}$	0.82	2.15	$2.899(2)$	152
C12-H12C O11	0.96	2.60	$3.357(2)$	136
C12-H12C O14	0.96	2.44	$2.990(2)$	116

Symmetry code: (i) $2-x, 1-y, 1-z$.

The H atoms were positioned geometrically and were treated as riding on their parent C and O atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $\mathrm{O}-\mathrm{H}$ distance of $0.82 \AA$. Rotating-group refinement was used for the methyl and hydroxy groups.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

References

Agarwal, S. K., Verma, S., Singh, S. S., Tripathi, A. K,, Khan, Z. K. \& Kumar, S. (2000). J. Ethnopharmacol. 71, 231-234.

Aldoshin, S., Chuev, I., Philipenko, O., Pozzo, J.-L., Lokshin, V., Pèpe, G. \& Samat, A. (1996). Acta Cryst. C52, 1537-1539.
Aldoshin, S., Chuev, I., Utenyshev, A., Lokshin, V., Pozzo, J.-L., Pèpe, G. \& Guglielmetti, R. (1995). Acta Cryst. C51, 141-143.
El-Gaby, M. S., Zahran, M. A., Ismail, M. M. \& Ammar, Y. A. (2000). Farmaco, 55, 227-232.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Etter, M. C., Macdonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256 262.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Ishizuka, N., Matsumura, K., Sakai, K., Fujimoto, M., Mihara, S. \& Yamamori, T. (2002). J. Med. Chem. 45, 2041-2055.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yogavel, M., Velmurugan, D., Sekar, K., Schenk, H., Fraanje, J., Peschar, R., Srinivasan, S., Athappan, P. R. \& Rafi, Z. A. (2003). Acta Cryst. E59, o266o268.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

[^0]: Enraf-Nonius CAD-4
 diffractometer
 Non-profiled $\omega / 2 \theta$ scans
 Absorption correction: none
 2091 measured reflections
 2091 independent reflections
 1963 reflections with $I>2 \sigma(I)$

